A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes

F. Graveleau *, J.-E. Hurtrez, S. Dominguez, J. Malavieille

Université Montpellier II, CNRS UMR 5243 Géosciences Montpellier, F-34095 Montpellier, France
LIA-ADEPT 536 CNRS-NSC, France-Taiwan

A R T I C L E I N F O

Article history:
Received 7 March 2011
Received in revised form 15 September 2011
Accepted 30 September 2011
Available online 12 October 2011

Keywords:
Experimental modeling
Experimental material
Relief dynamics
Foreland
Erosion
Morphotectonics

A B S T R A C T

We developed a new granular material (MatIV) to study experimentally landscape evolution in active mountain belt piedmonts. Its composition and related physical properties have been determined using empirical criteria derived from the scaling of deformation, erosion-transport and sedimentation natural processes. MatIV is a water-saturated composite material made up with 4 granular components (silica powder, glass microbeads, plastic powder and graphite) whose physical, mechanical and erosion-related properties were measured with different laboratory tests. Mechanical measurements were made on a modified Hubbert-type direct shear apparatus. Erosion-related properties were determined using an experimental set-up that allows quantifying the erosion/sedimentation budget from tilted relaxation topographies. For MatIV, we also investigated the evolution of mean erosion rates and stream power erosion law exponents in 1D as a function of slope.

Our results indicate that MatIV satisfies most of the defined criteria. It deforms brittly according to the linear Mohr-Coulomb failure criterion and localizes deformation along discrete faults. Its erosion pattern is characterized by realistic hillslope and channelized processes (slope diffusion, mass wasting, channel incision). During transport, eroded particles are sorted depending on their density and shape, which results in stratified alluvial deposits displaying lateral facies variations. To evaluate the degree of similitude between model and nature, we used a new experimental device that combines accretionary wedge deformation mechanisms and surface runoff erosion processes. Results indicate that MatIV succeeded in producing detailed morphological and sedimentological features (drainage basin, channel network, terrace, syntectonic alluvial fan). Geometric, kinematic and dynamic similarity criteria have been investigated to compare precisely model to nature. Although scaling is incomplete, it yields particularly informative orders of magnitude. With all these characteristics, MatIV appears as a very promising material to investigate experimentally a wide range of scientific questions dealing with relief dynamics and interactions between tectonics, erosion and sedimentation processes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the dynamic interactions between tectonics, erosion and sedimentation in mountain belts is a difficult challenge because field morphological and structural observations correspond to a "snapshot" in the long geological history of the topography. In addition, they usually deliver sparse datasets in both time and space that are difficult to integrate into comprehensive 4D evolution models. To access to relief dynamics, experimental modeling can be used as a good complement to fieldwork investigations. Up to now, two types of approaches can be distinguished. First, the "tectonic" approach, commonly called "sandbox modeling", has been intensively used for a long time to study accretionary wedge and fold-and-thrust belt dynamics (Fig. 1a) (Cadell, 1888; Davis et al., 1983; Hubbert, 1951; Malavieille, 1984). Erosion and sedimentation are mainly modeled in 2 dimensions by respectively removing material from high topographies (Konstantinovskaia and Malavieille, 2005, 2011; Mulugeta and Koyi, 1987) and by sifting fresh material in basins (Fig. 1a) (Bonnet et al., 1993; Larroque et al., 1995; Malavieille, 2010; Malavieille and Konstantinovskaya, 2010). Second, the "geomorphic" approach is focused mainly on landscape dynamics in response to changes in tectonic, climatic or initial boundary conditions (Babault et al., 2005; Bonnet and Crave, 2003; Hasbargen and Paola, 2000; Lague et al., 2003; Pelletier, 2003; Rohais et al., 2011). Erosion and sedimentation are triggered by sprinkling water micro-droplets on the model surface whereas tectonics consists essentially in pure uplift. Model uplift is performed mechanically by lowering channel outlet to decrease the river base-level or by elevating a central column of material (Fig. 1b).

Model materials in both set-ups are generally granular media (such as sands, beads or powders) because their mechanical properties are suitable to simulate deformation and erosion of rocks in the upper continental crust (Hubbert, 1951; Lohrmann et al., 2003;
Ramberg, 1981). In tectonic modeling, materials are mainly dry quartz sand or silts (Cobbold and Castro, 1999), but other components are also used to weaken or strengthen the sand pack and improve monitoring techniques. Among these materials are garnet sand (Wilkerson et al., 1992), silica powders (Bonnet et al., 2007; Galland et al., 2006), glass microbeads (Bonnet et al., 2008; Hoth et al., 2007), glass or aluminum microspheres (Rossi and Storti, 2003), mica flakes (Storti et al., 2000), Pyrex grains (Baby et al., 1995) or walnut shells (Cruz et al., 2008). In geomorphic experiments, granular materials are generally sandy particles or fine powders systematically dampened with water. There are natural sands (Schumm et al., 1987; Wittmann et al., 1991), sand/silt/clay mixtures (Bryan et al., 1998; Flint, 1973; Gabbard et al., 1998; Koss et al., 1994; Pelletier, 2003; Phillips and Schumm, 1987; Schumm and Parker, 1973), loess (Lague et al., 2003; Rieke-Zapp and Nearing, 2005), artificial fly ashes (Hancock and Willgoose, 2001) or silica powders (Babault et al., 2005; Bonnet, 2009; Bonnet and Crave, 2003; Crave et al., 2000; Rohais et al., 2011; Turowski et al., 2006). Graphite powders are also used to model coastal stratigraphy (Heller et al., 2001; Paola et al., 2001) whereas plastic powders are used to study the evolution of submarine canyon morphology (Lancien et al., 2005; Métivier et al., 2005).

In a previous work, we presented a new experimental device and protocol based on both “tectonic” and “geomorphic” set-ups (Fig. 1c) (Graveleau and Dominguez, 2008). Objectives were to study the morphological evolution of an active piedmont controlled by the interactions between accretionary wedge deformation mechanisms and coeval erosion–transport–sedimentation processes. In the present paper, we focus on the characteristics of the specific material developed to model simultaneously orogenic wedge deformation mechanisms (faulting, folding) and realistic surface processes (incision, hillslope processes). First, we detail and discuss the specifications and required physical properties. Second, we describe the four granular media that compose the selected material. Then, we analyze the typical morphologic, tectonic and sedimentary features obtained with this material. Finally we discuss deformation and erosion–transport processes and model scaling.

2. Specifications and required physical properties of model materials

2.1. Deformation and surface processes in models

Deformation of rocks in the upper continental crust is brittle and responds to the Mohr–Coulomb failure criterion (Byerlee, 1978). In mountain belt piedmont, the deformation is essentially localized along imbricated thrusts that dip toward the hinterland and branch on deep crustal décollements (Molnar and Lyon-Caen, 1988; Suppe, 1981). It generates wedge-shape geometry and indicates the forward propagation of deformation toward the undeformed foreland (Chapple, 1978; Davis et al., 1983). In “sandbox” experiments, such deformation mechanisms, style and sequence are well reproduced with dry granular materials (Fig. 1a) (Davis et al., 1983; Malavieille, 1984; Mandl et al., 1977). In our model, we expect such an accretionary wedge deformation style and such sequences of thrust nucleation and propagation.

Mountain belt topography is shaped by a variety of surface processes that are mainly controlled by topographic slopes (Montgomery and Brandon, 2002). Generally, high slopes are observed at elevated topography and are shaped by specific hillslope processes (rockfall, landslides, debris flows, slumping) whereas low slopes lay at low elevation and are dominated by fluvial processes. Sedimentation occurs essentially in foreland flexural basins (Jordan, 1981) and piggy-back basins (Ori and Friend, 1984) where the decrease in river transport capacity brings sediment load to deposit. In “morphologic” experiments, erosion and transport processes are usually triggered by sprinkling water droplets over the model (Fig. 1b). Overland flow...
generates runoff detachment in channels (Lague et al., 2003) and may trigger landslides (Bigi et al., 2006). Similarly, we expect in our model such active geomorphic processes on hillslopes and along channels to generate realistic geomorphic patterns made of drainage networks, hillslopes, channels and alluvial fans.

As in nature, hillslope processes in our model should result from slope destabilization induced by river incision at hillslope toe or by fluid infiltration. We avoided rainsplash effect triggered by water droplet impacts because it generates an unrealistic mechanical erosion process that destroys the morphological sharpness of drainage basins, channel networks and alluvial fans. As fluid transitory overpressures are negligible in fine sandy wedge models (Mourgues and Cobbold, 2006), destabilization processes on hillslopes are mainly controlled by the ratio between cohesive and body forces. To promote slope failures, body forces should be larger than cohesion and frictional properties. This requirement corresponds to materials with high particle density, low surface roughness, high sphericity, large grain-size, high permeability and high water saturation ratio. To reduce capillary forces that generate cohesion, liquid in material should have low surface tension and high density and should be near saturation.

Concerning channelized processes, water flow in channels can erode the substrate if the basal shear stress applied by the fluid on the riverbed exceeds the thresholds for detachment and transport (Howard, 1994). Threshold conditions are more readily met when infiltration is reduced (Lague et al., 2003). For granular materials, fluid infiltration capacity is controlled by permeability that is itself a function of grain-size distribution and porosity (Carmen, 1938, 1956; Kozeny, 1927). Porosity is additionally a function of grain size, grain shape and packing. Therefore, to promote runoff, physical properties like grain size, porosity and permeability should be reduced. However, grain-size should not be excessively reduced, because cohesion generated by electrostatic forces or capillarity increases significantly for very small particles (Lague et al., 2003), thus increasing detachment threshold and reducing hillslope processes. In addition, particles are more easily detached and transported by runoff if the particle density is low and size of grains is small.

Finally, layering of deposited sediment is a desirable property to favor the study of syntectonic sedimentary record. We sought for wide grain-size distributions, contrasted particle densities and grain shapes to promote transport dynamics that generate various transport distances of particles and create lateral facies changes in deposits.

2.2. Scaling

Experimental modeling is ruled by a set of geometric, kinematic and dynamic similarity criteria that imply, respectively, proportionality of length, time and forces between nature and model (Hubbert, 1951; Ramberg, 1981). Tectonic processes are scaled down using Cauchy’s equations of motion for continuum medium in a non-dimensional form (Davy and Cobbold, 1991). It produces dimensionless numbers that must be preserved between nature and experiment (Horsfield, 1977; Weijermars and Schmeling, 1986). One of these (Froude number), links inertial to gravity forces. It is neglected because tectonic velocities in nature are slow (in cm/yr) compared to timescales of tectonic processes (in Myr). Another dimensionless number links body to surface forces. Its conservation between model and experiment leads to the expression:

\[
\alpha^* = \rho^* g^* L^*
\]

where \(\alpha^*\), \(\rho^*\), \(g^*\) and \(L^*\) are the model to nature ratio for stress (or cohesion), density, gravity and length, respectively. It implies that cohesion, density, gravity and characteristic length scales in model should be proportionally linked to natural values. Generally, most experiments are performed in a normal gravity field, so \(g^*\) equals 1. In addition, length ratio \(L^*\) is imposed by set-up dimensions and typically ranges around \(10^{-5}\) (1 cm = 1000 m). Dry quartz sand satisfies these constraints since the angle of internal friction is typically in the range of natural rocks (around 25–45°), and the density (\(\rho\) = 1.5–1.7 g cm\(^{-3}\)) and cohesion (10–100 Pa) present reasonable values to satisfy Eq. (1). Note that few experiments have used moist sands (Chamberlin and Miller, 1918; Macedo and Marshak, 1999; Van Mechelen, 2004; Wang and Davis, 1996) because the addition of small amount of water increases the mechanical strength (Halsey and Levine, 1998; Hornbaker et al., 1997; Mitrai and Nori, 2006). It creates interstitial liquid bridges between particles that generate capillary forces and increase cohesion (Pierrat and Caram, 1997; Rumpf, 1962; Schubert, 1984). By controlling this increase in cohesion, it is possible to model continental crustal strengthening (Van Mechelen, 2004; Wang and Davis, 1996).

Downscaling geomorphic processes from nature to model is difficult (Lague et al., 2003; Niemann and Hasbargen, 2005; Paola et al., 2009; Peakall et al., 1996; Schumm et al., 1987). The problem is to simultaneously downscale the length, force and time boundary conditions without introducing scale distortions (Bonnet and Crave, 2006; Turowski et al., 2006). In nature, erosion and transport processes occur over a wide range of time-scales (from rapid landslides or river floods to slow hillslope creep) and space-scales (sediment grain size ranges from micrometric particles to decimetric boulders). Experimentally, a rigorous reduction of these scales is impossible as it would require the use of nanometric particles and induce the occurrence of extremely rapid geomorphic processes (Bonnet and Crave, 2006; Schumm et al., 1987). However, the dynamic similarity of geomorphic experiments has been recently addressed by comparing hydraulic dimensionless numbers (Reynolds and Froude numbers) between models and nature (Niemann and Hasbargen, 2005; Peakall et al., 1996). Reynolds number compares advective acceleration to frictional resistance (viscous forces) and distinguishes laminar (Re<500) and turbulent (Re>500) flow conditions. Froude number compares advective to gravitational accelerations and distinguishes subcritical (F<1), critical (F=1) or supercritical (F>1) flow conditions. Results indicate that Froude numbers in experiments compare well with natural values but Reynolds numbers are significantly lower. Although not perfectly scaled, this suggests however that the natural and experimental dynamics are both dominated by the same balance of forces. Gravitational forces are the leading forces in the system and they typically exceed inertial and viscous forces. This could be likely the reason explaining the striking similarity between natural and experimental landscapes that has been recently qualified as the “unreasonable effectiveness” of geomorphic experiments (Paola et al., 2009).

3. Suitable model materials

We have tested 11 pure materials in both dry and water-saturated conditions and then as mixtures so as to progressively approach a composition that fulfills the specifications previously described (Graveleau, 2008). For brevity, we only present in this paper the 4 granular media that compose the final material called “quaternary material” (MatIV). The 4 components are glass microbeads (GM), plastic powder (PVC), silica powder (SilPwd) and graphite powder (Graph). MatIV composition is made up with 40% of GM, 40% of SilPwd, 18% of PVC and 2% of Graphite (percentage in weight). In this section, we essentially detail their physical and mechanical properties in water-saturated conditions (Table 1). The measured properties are grain shape (sphericity, roughness), grain-size (median D50), particle density (\(\rho_{part}\)), bulk density of material (\(\rho_{bulk}\)), porosity (\(\phi\)), permeability (\(k\)) and frictional properties (angle of internal friction \(\phi\) and cohesion \(C\)). All measurements were carried out at Geosciences Montpellier Laboratory, University of Montpellier II, France.
3.1. Grain size and particle density

Each granular material was measured for shape and size with a scanning electron microscope and a laser granulometer, respectively (Fig. 2; Table 1). GM (Eyraud S.A, France) has a grain size between 50 and 150 μm with a median D50 at 88 μm (Fig. 2a). The grains are spherical and very smooth. The manufacturer gives a particle density around 2.5 ± 0.1. SilPwd (SIBELCO FRANCE, France) has a grain size between 1 and 250 μm with a D50 at 43 μm (Fig. 2b). The grains are very angular and the particle density is 2.65 (pure quartz). PVC (Solvay S.A., France) has a grain size between 75 and 225 μm with a median at 147 μm (Fig. 2c). The grains are globular and their density is around 1.38 ± 0.1 according to the manufacturer. Graphite (GraphTek S.A., France) has a grain size between 50 and 450 μm with a D50 at 172 μm (Fig. 2d). For our study, we only kept grain size between 90 and 250 μm. The grains are angular and their density is 2.25 ± 0.1 according to the manufacturer. Finally, the selected MatIV has a grain size ranging from 1 to 250 μm with a D50 at 105 μm (Fig. 2e). It is possible to evaluate a mean particle density for MatIV (\(\rho_{\text{part}}\)) by assuming an equation of volume conservation (Eq. (2)):

\[
<\rho_{\text{partMatIV}} > = \left(\frac{\rho_{\text{GM}}}{\rho_{\text{GM}}} + \frac{\rho_{\text{SilPwd}}}{\rho_{\text{SilPwd}}} + \frac{\rho_{\text{PVC}}}{\rho_{\text{PVC}}} + \frac{\rho_{\text{Graph}}}{\rho_{\text{Graph}}} \right)^{-1}
\]

with

\[
X_i = \frac{M_i}{M_{\text{MatIV}}}
\]

\(X_i\) is the mass proportion of pure component “i” in MatIV. According to this expression, MatIV has a mean particle density close to 2.22 ± 0.1. This value is used for erosion tests reported in the next section.

3.2. Average water-saturated bulk density

Average water-saturated bulk density for each material (\(\rho_{\text{bulk}}\)) was calculated by weighing successive known volumes of material (Cobbold and Castro, 1999) (Fig. 3a). As density is a function of compaction and handling technique (Krantz, 1991; Lohrmann et al., 2003), each test was carried out with a similar technique that consisted of mixing the material with a saturation proportion of water before filling containers of various volumes. Each sample was slightly vibrated to ensure air bubble escape. Plot of mass versus volume indicates a good linear correlation whose slope equals density (Fig. 3b). Calculated densities are 1.87 ± 0.10 g/cm³ for GM, 1.90 ± 0.10 g/cm³ for SilPwd, 1.11 ± 0.10 g/cm³ for PVC, 1.42 ± 0.10 g/cm³ for Graphite and 1.61 ± 0.10 g/cm³ for MatIV (Table 1). We stress that these measured densities represent average values at the scale of large volumes and that bulk density can likely increase downward due to compaction (see discussion in Section 4.4).

3.3. Average porosity and water saturation rate

Porosity (\(\phi\)) is defined as the volume of empty space within a sample relative to the total volume of the sample. We measured average porosity for each water-saturated material by weighing a volume of material that was initially mixed with water, drying the sample in an air oven and weighing the sample again. The mass difference between the two measurements was assumed to represent the mass of water that initially filled pores and then evaporated. Saturation of materials was performed at atmospheric pressure with the same protocol as for bulk density. Only a few tests were performed for each sample, with consistent results. Porosity is 36 ± 1% for GM, 35 ± 1% for SilPwd, 46 ± 1% for PVC, 35 ± 1% for Graphite and 34 ± 1% for MatIV (Table 1). These results are in the same range of values (±5–10%) as analytical calculations performed with measurements of particle density and bulk density (Gravelleau, 2008).

Water saturation ratio (\(w\)) in granular media is the mass ratio of interstitial liquid (water) to solid (grains). We calculated average saturation ratio from mass measurements collected during porosity tests. It is 23 ± 1% for GM, 21 ± 1% for SilPwd, 63 ± 1% for PVC, 31 ± 1% for Graphite and 26 ± 1% for MatIV (Table 1).

3.4. Permeability

Permeability (\(k\)) is defined as the ability of a porous material to allow fluids to pass through it. It was measured with a Darcy pipe device made with a PVC cell filled with the tested material (Fig. 4a). Cell length (L) and section (S) were respectively 0.25 m and 5.43 × 10⁻⁴ m². An electric pump (accuracy 0.01 ml/h) supplied increasing water discharge stages (Q) at the entrance. Two pressure gauges (accuracy 100 Pa) measured the water pressure gradient at both pipe edges (dP=PIn–POut). Strainers, pressure equalizers and filter papers were arranged at the extremities of the cell to maintain steady flow across the sample and reduce pressure instabilities.

Well-known Darcy’s law (Darcy, 1856) indicates proportionality between the discharge velocity (\(Q/S\)) of an incompressible fluid through a porous medium, and the longitudinal gradient of the fluid pressure (dP/L). For our experiments, assuming a one-dimensional flow, it gives (Eq. (4)):

\[
\frac{Q}{S} \propto \frac{k}{\eta} \frac{dP}{L}
\]

with \(\eta\) the dynamic viscosity of the fluid. A linear relationship between discharge velocity and the longitudinal pressure gradient indicates that our materials follow Darcy’s law (Fig. 4b). Mean-square correlations give slopes k/\(\eta\) around 3.5 × 10⁻⁹ m²/Pa.s for GM, 7.2 × 10⁻¹⁰ m²/Pa.s for PVC and 4.9 × 10⁻¹⁰ m²/Pa.s for MatIV (Table 1). Assuming a viscosity of \(\eta = 10^{-3}\) Pa.s for water, permeability is around 3.5 × 10⁻¹² m² (3.5 Darcy) for GM, 7.2 × 10⁻¹² m² (7.2 Darcy) for PVC and 4.9 × 10⁻¹² m² (0.5 Darcy) for MatIV (Table 1). Our protocol was inappropriate for SilPwd because it has a very low
permeability below experimental determination. However, we estimated an order of magnitude around 10^{-14} m2 (0.01 Darcy) from one single measurement of water discharge and pressure gradient. Graphite was not measured, since it represents a minor proportion of the selected composition. Our measurements are consistent with permeability calculated for moistened silica powder in geomorphologic experiments ($k=10^{-14}$ m2) (Rohais, 2007) and for dry sand in tectonic experiments ($k=10^{-11}-10^{-10}$ m2) (Cobbold et al., 2001).

3.5. Deformation behavior

3.5.1. Frictional properties

Granular materials deform according to the linear Mohr–Coulomb criterion that links shear stress τ to normal stress σ_n on the failure plane (Eq. (5)).

$$\tau = \mu \sigma_n + C$$

(F. Graveleau et al. / Tectonophysics 513 (2011) 68–87)

Fig. 2. Scanning electron micrograph pictures and grain size histograms of tested granular materials and selected composite material. Grain size data were obtained with a laser granulometer. (a) Glass microbeads (GM). Grains are highly spherical with a smooth surface. Grain size histogram ranges between 50 and 150 μm and nearly symmetric around $D_{50}=88$ μm. (b) Silica powder (SilPwrd). Grains are angular in shape and have a wide size distribution from 1 to 250 μm with a $D_{50}=43$ μm. (c) Plastic powder (PVC). Particles are globular and range between 75 and 225 μm. Median is $D_{50}=147$ μm. (d) Graphite powder (Graph). Grains are tabular and very irregular in shape. Grain size histogram ranges from 50 to 450 μm with a $D_{50}=172$ μm. (e) Quaternary material (MatIV). It is composed of the four previous materials. Its grain size distribution ranges from 1 to 250 μm, with a D_{50} at 105 μm.
where C is cohesion and μ is the coefficient of internal friction defined by $\mu = \tan \phi$, where ϕ is the angle of internal friction. Frictional properties are determined with various apparatus that measure shear stress at failure for increasing normal stresses. These devices are the Hubbert-type set-up (Cobbold and Castro, 1999; Cobbold et al., 2001; Galland et al., 2006; Hubbert, 1951; Krantz, 1991; Lohrmann et al., 2003; Mourgues and Cobbold, 2003; Richefeu et al., 2006, 2007; Schellart, 2000; Van Mechelen, 2003), the Casagrande shear box (Casagrande, 1932; Rossi and Storti, 2003), and the ring shear tester (Adam et al., 2005; Ellis et al., 2004; Hampel et al., 2004; Hoth et al., 2007; Mandl et al., 1977; Panien et al., 2006; Schulze, 1994). Coefficient of internal friction μ corresponds to the slope of the regression curve (yield locus) of couples ($\sigma_{\text{eff}}, \tau$) defined at failure. Cohesion C corresponds to the extrapolated shear stress at zero normal stress. This extrapolation slightly overestimates cohesion since the yield locus is curved downward at very low normal stresses (Schellart, 2000). Finally, the frictional properties of an undeformed material are generally different from those of an already deformed material (Byerlee, 1978; Lohrmann et al., 2003; Mandl et al., 1977). The higher strength of an undeformed material defines “peak friction” conditions whereas the lower strength of the already deformed material defines the “dynamic-stable friction” conditions.

3.5.1.1. Experimental facility and protocol. We built a modified Hubbert-type direct shear apparatus to measure the frictional properties of our water-saturated granular materials (Fig. 5). It consists of two aluminum rings, 8 cm in internal diameter (D) and 50 cm2 in horizontal cross-sectional area (A), which contain the granular material sample. The lower ring is 3 cm deep and perforated to drain the sample. It is fixed on a mobile plateaus whose displacement is controlled by a stepping motor. The upper ring is 5 cm high and fixed on a rigid pendulum that rests on a force gauge. Its internal surface is covered with a low friction film to reduce sidewall friction. A 0.1 mm gap between both rings avoids their contact and controls the location of the shear plane. This gap is filled with low viscosity grease to prevent material and water from escaping. Several tests carried out with the empty shear box and involving (or not) grease indicate that the viscous forces added by the grease film are negligible relative to the shear force required to deform samples. When the lower ring moves rightward, the granular sample is sheared and the upper ring presses the force gauge. Both displacement and force gauge data are continuously recorded and allow calculating stress–strain curves (Fig. 5). In our tests, the total displacement of the lower ring is 5 mm, which is enough to shear the sample and generate a fault plane. During this displacement, the cross-sectional area (A) between the upper and lower ring and within the sample is not constant and decreases progressively to reach a maximum of about 8% at the end of the test. Our force measurements therefore include some frictions of the ring borders within the sample, which likely drives to a slight underestimation of friction. In each test, the sample height (h) of material above the failure plane is 10±0.5 mm. For most materials (i.e., GM, PVC and MatIV), this thickness is large enough to avoid internal deformation and low enough to avoid sidewall friction. The height to diameter ratio $h/D=0.125$ is well below the 0.6 limit over which Jansen correction for sidewall friction should be considered (Mourgues and Cobbold, 2003). Note that this limit has been estimated for dry sand, but we assume that it should be similar for water-saturated materials. Measurements with SilPwde were more difficult because this material is very cohesive. A 10 mm high sample was too thick to avoid sidewall friction, but it was impossible to reduce the height of the sample otherwise internal deformation was observed. Consequently, although our tests produce consistent data to deduce a yield locus curve (see below), they must be considered as approximate. We particularly point out that these tests give minor values for cohesion and friction and provide an order of magnitude estimate.

We performed several tests with increasing normal loads to measure normal and tangential stress couples at failure and deduce a yield locus. The normal load applied on the shear plane corresponds to the sum of the sample material in the upper ring ($m_\text{up}=p.A_h$), a rigid disc ($m_\text{disc}=209$ g) and a standard mass M (Fig. 5). Each failure test was performed with the same mass of material and rigid disc, under constant measured saturation states but with increasing standard masses (from 500 g to 3000 g). Normal and measured shear forces were converted to normal and shear stresses by dividing by the shear plane area (A). They were in the range of 500–4000 Pa, which is slightly above typical normal stresses in dry shear tests of the literature (most are around 0–1500 Pa). Finally, materials were settled in the rings with the same protocol as for density and porosity measurements. Samples were totally removed and replaced by new material for each test. As frictional properties of granular materials
depend strongly on the conditions of preparation, we systematically measured bulk material density and water saturation ratio. Both were in the range of values reported in Table 1.

3.5.1.2. Experimental results. Our results indicate that a Mohr–Coulomb failure envelope can be drawn for the four tested materials at both “peak friction” and “stable friction” (Fig. 6). The best linear fit to the

![Fig. 5. Schematic sketch of shear box set-up. It is a Hubbert-type apparatus (Hubbert, 1951) composed of two rigid rings that contain the water-saturated sample. The lower ring is mobile and driven by a computerized stepping motor. The upper ring is fixed on a rigid framework. It is equipped with a force gauge to measure the shear force required to fracture the granular material. Each material is tested with increasing normal stresses (from 500 to 4000 Pa) provided by standard mass M settled over the sample.

![Fig. 6. Mohr–Coulomb envelopes for failure of (a) GM, (b) PVC, (c) SilPw and (d) MatIV. Open symbols correspond to peak friction measurements and full gray symbols correspond to stable friction measurements. Each data set falls into line according to Mohr–Coulomb failure criterion. Best-fit slopes and intercept at zero normal stress define the coefficient of internal friction (μ) and cohesion (C) respectively.](image-url)
data gives a slope equal to the coefficient of internal friction \(\mu \) and an extrapolated cohesion \(C \). Results for each material are summarized in Table 1, except for Graphite, which was not measured. For GM, coefficient of peak friction is \(\mu_{GM-peak} = 0.73 \pm 0.07 \) (i.e., \(\phi_{GM-peak} = 36^\circ \)) and coefficient of stable friction is \(\mu_{GM-stable} = 0.60 \pm 0.06 \) (\(\phi_{GM-stable} = 31^\circ \)) (Fig. 6a). Both peak and stable extrapolated cohesions are negative and therefore assumed to be close to 0 Pa (respectively \(C_{GM-peak} = -82 \) Pa and \(C_{GM-stable} = -73 \) Pa). For PVC, coefficients of peak and stable friction are high (\(\mu_{PVC-peak} = 1.35 \pm 0.27 \); that is \(\phi_{PVC-peak} = 53^\circ \); \(\mu_{PVC-stable} = 0.77 \pm 0.15 \); that is \(\phi_{PVC-stable} = 38^\circ \)) (Fig. 6b). Extrapolated cohesions are also negative and assumed to be virtually null (\(C_{PVC-peak} = -342 \) Pa and \(C_{PVC-stable} = -194 \) Pa). For both GM and PVC, we assumed that measured negative cohesions are due to slight overestimations of normal stresses triggered by non-zero sidewall friction. For SilPwd, yield locus measured negative cohesions are due to slight overestimations of normal and CGM-stable = 1300 ± 500 Pa for stable conditions. Extrapolated cohesions are high (\(C_{MatIV-peak} = 1200 \pm 500 \) Pa and \(C_{MatIV-stable} = 750 \pm 500 \) Pa) (Fig. 6d). These values for MatIV are high and assumed to be virtually null (\(C_{PWD-stable} = 45^\circ \) and \(C_{SilPwd-stable} = 1300 \pm 500 \) Pa for stable conditions. Extrapolated cohesions are very high compared to GM or PVC, which is consistent with observations made when handling and deforming the material. Finally, selected MatIV presents high coefficients of internal friction for peak friction (\(\mu_{MatIV-peak} = 1.13 \pm 0.17 \); that is \(\phi_{MatIV-peak} = 48^\circ \)) and stable friction (\(\mu_{MatIV-stable} = 0.83 \pm 0.12 \); that is \(\phi_{MatIV-stable} = 40^\circ \)) and high value of extrapolated cohesion (\(C_{MatIV-peak} = 1200 \pm 500 \) Pa and \(C_{MatIV-stable} = 750 \pm 500 \) Pa) (Fig. 6d). These values for MatIV will be discussed later in regards to scaling issues.

It is difficult to compare these results with published values as very few experimental works deal with this kind of water-saturated materials. In the geosciences literature, a water-saturated mixture made of sand, silt and kaolinite was measured with a cohesion around 112.5 Pa (Shepherd and Schumm, 1974) but no information was made of sand, silt and kaolinite was measured with a cohesion around 112.5 Pa (Shepherd and Schumm, 1974) but no information was given on the measurement protocol. More recently, apparent cohesion for under-saturated sands in the pendular state (i.e. the phase where the liquid between grains is discontinuous) was measured between 100 and 5000 Pa (Van Mechelen, 2004). In the civil engineering literature, experimental works refer generally to low water content (up to 4–5%). The angle of internal friction of granular materials is supposed to be constant as a consequence of moistening (Pieratt et al., 1998) whereas cohesion increases with water content until it reaches a plateau (Richefeu et al., 2006). This cohesion plateau is around 800 Pa for sands and glass beads between 100 and 500 \(\mu \) in diameter (Richefeu et al., 2006, 2007; Soulié et al., 2006).

3.5.2. Deformation style

We tested each water-saturated material in a classic sandbox set-up to analyze the deformation style and mechanical behavior (Fig. 7). We present cross-sectional pictures taken at a similar state of deformation, which corresponds to 30 cm of shortening. Experimental runs lasted several tens of minutes during which overpressures were supposed to be negligible due to material permeability (Mourgues and Cobbold, 2006). The basal friction was high (\(\phi = 0.5 \)) in all tests and no material was allowed to output the system. Rainfall was absent so the “aerial” part of the rising wedge was likely under-saturated as water was allowed to percolate through the pores down to the base level. However, saturation state was maintained in the incoming thickness of material using a water tank located behind the buttress (Fig. 7a). These experimental conditions were chosen to focus the study on deformation style and therefore differ slightly from standard geomorphic experiments detailed in the discussion section (Fig. 12). Depending on material permeability, we presumed that the under-saturation of the aerial part of the wedge only slightly modify deformation styles.

Our results confirm that deformation of water-saturated materials generate accretionary wedges with thrust planes dipping toward the rigid buttress and propagating sequentially outward (Davis et al., 1983). However, deformation styles are different between materials. GM and PVC present few well-individualized thrusts and backthrusts (4 to 5) and relatively low surface slope \(\alpha \) (10 ± 0.5° for GM (Fig. 7a′) and 7.5 ± 0.5° for PVC (Fig. 7b′)). GM has a significant component of

![Fig. 7. Deformation style for water-saturated granular materials. Pictures are in cross-section and represent the final stage after 30 cm of shortening. Note the difference in deformation style between (c) SilPwd (many thrusts and back-thrusts) and other materials (fewer thrusts, folding).](image-url)
deformation by folding above the most external thrust (#4), whereas PVC mostly deforms brittlely (see for instance the occurrence of back-thrusts over ramp #4). On contrary, SilPwd presents a much more brittle deformation style with 7 main thrusts and numerous back-thrusts (Fig. 7c). The taper slope is high (around 14° ± 0.5°). Finally, MatIV displays a deformation style characterized by 5 well-individualized thrusts and few back-thrusts (Fig. 7d). Surface slope is high (15° ± 0.5°). According to these tests, the deformation style for GM, PVC and MatIV reproduces well an accretionary wedge pattern made of individualized in-sequence thrust faults dipping toward the buttress whereas SilPwd displays small, very numerous and closely spaced thrusts. This is certainly due to its higher cohesion than GM, PVC and MatIV (see Section 3.5.1.2).

3.6. Erosive properties

3.6.1. Experimental set-up and protocol

We built an experimental set-up to analyze the surface morphology and erosion–transport properties of each water-saturated material (Fig. 8). We quantified sedimentary fluxes in order to calculate mean erosion rates and derive erosion law parameters. The measurement protocol is based on several previous techniques (Hasbargen and Paola, 2000; Métivier and Meunier, 2003) and consists of a PVC box (0.358 m long, 0.347 m large and 0.050 m deep) filled with water-saturated material. It can be tilted by an angle α from few degrees to 30°. A rainfall system delivers water micro-droplets (precipitation rate around 25–30 mm/h; mean droplet diameter near 100 μm) that trigger erosion–transport of the material. Calculation of impact kinetic energy released by micro-droplets shows that their energy is below the natural range of grain-grain binding energy (5–600 μJ) (Lague et al., 2003; Salles et al., 2000). Rainsplash is therefore limited and erosion occurs mainly by surface runoff and/or mass slides. Eroded particles flow down the slope and fall in a settling tank (tank 1). This tank is filled with water and its volume is maintained constant using an overflow device. As eroded particles fall in tank 1, they replace a volume of water that overflows in a second tank (tank 2). Two mass balances (accuracy 0.1 g) measure the weight of both tanks. The first balance at tank 1 measures the cumulative mass of eroded sediment whereas the second one at tank 2 controls the amount of supplied water. All experiments are prepared using a similar protocol. First, the material is saturated with water and then poured in the box. Excess material is delicately scraped off and leveled with a ruler. Secondly, the material is allowed to settle overnight so that some water can evaporate and allow the model to sustain future tilting. Finally, the model surface is tilted by a fixed angle at the beginning of the experiment and the rainfall precipitation is initiated.

3.6.2. Basic landforms and fluxes

We present four experiments performed with a constant surface slope of 15° to illustrate how materials erode (Fig. 9). This slope is imposed as an initial stage by tilting the erosion box (Fig. 9a). Such experiments correspond to topographic relaxation tests as no additive tilting is applied afterwards (Crave et al., 2000; Lague et al., 2003). We discuss our results for each material by describing first the final stage morphologies and second their recorded mass evolution curve (sediment yield). Note that pictures were taken at different times (15 min for PVC, about 1 or 2 h for GM and SilPwd, and 6 h for MatIV) because materials erode at various erosion rates.

Qualitatively, the morphology observed in pure material experiments is significantly different when comparing GM or PVC (Fig. 9b and c) with SilPwd or MatIV (Fig. 9d and e). GM and PVC have a wide 15° tilted plateau preserved in the uppermost part of the drainage basin where no erosion occurred. The lower part is poorly channelized and corresponds to slightly tilted surfaces. Their slopes were measured at 9.7–10.1° for GM and 2.4–2.9° for PVC with a digital inclinometer (accuracy 0.1°). In both cases, the erosion front displays con cave scars that indicate erosion processes dominated by landsliding. The absence of overland flow suggests that precipitation is lower than infiltration capacity. All precipitated water seeps through material pores and generates subsurface flow. The impermeable bottom of the box directs the flow lines toward the overflow device, and subsurface flows weaken the base of the erosion front, triggering landslides and mass wasting. This hypothesis is supported by high values of measured permeability for GM and PVC reported above (Table 1). SilPwd displays a channelized drainage pattern with at least five main catchments delimited by tortuous crests (Fig. 9d). Some relics of the initial tilted plateau are still preserved along the upper borders but their surface is small. The downstream zone has a homogeneous slope of 10–10.3° and is composed of deposited particles or outcropping “bedrock”. The transition zone between channels and hillside displays frequent overhanging banks that can be removed by landslides. Finally, MatIV presents six well-defined drainage basins with remnants of the initial surface along the upper border and crests between each of them (Fig. 9e). Overhangs on hillside are rare because landslides frequently remove them. In the middle section, bedrock and alluvial terraces formed due to the lateral and upstream incision of streams. The downstream domain displays a tilted zone with “alluvial” and “bedrock” portions dipping at a mean slope around 8° ± 0.2°. In all these examples, the tilted downstream surface could have evolved as a “buffer zone”, that is, it regulated the incoming and outgoing fluxes of particles according to transport capacity. Or it could also have evolved as a “by-pass zone”, that is, most of the particles eroded from above are simply transmitted along this surface toward the overflow device. In the first case, the
measured output flux may be a minimum estimation of the volume eroded in the drainage basins. In the latter case, it may fit more closely to the real eroded volume. In both circumstances, the dynamics of this downstream flat domain is likely related to thresholds in erosion and transport of particles (Lague et al., 2003).

The evolution of sediment yield for each material displays different trends and therefore indicates different erosion rates (Fig. 9f). For GM, the curve has a steep slope (about 49 ± 1 g/min) during the first 10 min, which rapidly decreases during the last hour (sediment yield around 2 ± 0.1 g/min). The time of transition to stable phase tGM is around 15 min. For SilPwd, the evolution curve is much more regular and grows with a relatively constant slope (16 ± 1 g/min). However, a slight inflection is apparent around tSilPwd = 30 min and splits the evolution into two phases. Mean sediment yield is around 22 ± 1 g/min before this time, whereas it is about 13 ± 0.1 g/min after. For PVC, the yield curve is much shorter as the experiment lasts only 15 min. The global trend of the curve defines a high mean sediment yield (35 ± 1 g/min) that can be divided into two sections: a rapid phase of sediment production during the first 5 min (88 ± 1 g/min) and a slight decrease around tPVC = 7–8 min (50 ± 1 g/min). Finally, MatIV has a regular concave-down yield curve with a mean slope around 15 ± 1 g/min during the first 20 min and around 5 ± 0.1 g/min for the last 30 min.

In conclusion, these tests indicate that water-saturated granular materials like PVC or GM display high erosion rates and favor mass wasting processes. This behavior is certainly related to the relatively high porosity and permeability and low cohesion. Under such conditions, no drainage basin and channel forms. SilPwd and MatIV favor incision processes and develop drainage basins and drainage networks with hillslopes and crests. The large granulometric dispersion of particles allows detailed morphological features in catchments. From a morphological point of view, PVC and GM do not fit our physical requirements but SilPwd and MatIV do.

3.6.3. Erosion properties for MatIV

The previous deformation and erosion tests have demonstrated that MatIV is an experimental material that accounts for first order deformation characteristics of the continental crust (faults, thrust slices) and first order morphology of mountainous relief (valley, channel, crest and hillslopes). In the following, we characterize more precisely its erosion properties, namely the evolution of mean erosion rates as a function of initial slope and its corresponding erosion law.

3.6.3.1. Mean erosion rates. We analyzed the evolution of MatIV mean erosion rates for increasing initial slopes under a constant precipitation rate of 25 ± 1 mm/h (Fig. 10). Initial slopes were 10, 13, 15 and 20 ± 0.1°. We present the final stage morphology for each experiment (Fig. 10a–d) and the evolution of erosion fluxes for each slope (Fig. 10e). Each curve can be broadly divided into two successive domains. The first domain starts at the beginning (t = 0) and stops at t = 150–250 min for slopes 10, 13 and 15° and t = 10–15 min for 20°. This portion has a broad exponential evolution that could be tentatively interpreted as a transitory phase of the drainage network evolution. Note that it does not correspond to the connectivity of the drainage network (Lague et al., 2003) as full connectivity is achieved very rapidly (after 5 to 10 min of experiment). In the following, we do not analyze this initial part of the curve but focus on the second phase. This second phase lasts till the end of the experiment and is characterized by a nearly linear evolution of the sediment mass with time. We presume that this linear phase would tend to flatten and reach a near zero mass flux after several tens of hours or days (Schumm and Rea, 1995). Nonetheless, this constant sediment flux indicates that topography is transferring material at a steady rate. We evaluate sediment yields (Q) as a function of slope for these steady phases by using root mean-square correlations. It gives sediment yields around 0.6 ± 0.1 g/min for 10°, 1.3 ± 0.1 g/min for 13°,
2.8 ± 0.1 g/min for 15° and 16.1 ± 0.1 g/min for 20° (Fig. 10e). It indicates, as expected, that the steeper the initial slope, the quicker the model exports material.

Solid load measurements at a river outlet can be interpreted in terms of upstream mean denudation rates (Summerfield and Hulton, 1994). We followed this approach and calculated a minimum erosion rate for each steady curve. Given the mean particle density of MatIV ($\rho_{Part_{MatIV}}$ = 2.22 g/cm3), porosity (θ_{MatIV} = 34%) and the total area of the box (A_{total} = 1242 cm2), mean erosion rate (E) for each slope can be calculated (Eq. (6)):

$$E = \frac{Q}{<\rho_{Part_{MatIV}}>(1-\theta_{MatIV})A_{total}}$$

Results give mean erosion rate around 0.20 ± 0.01 mm/h at 10°, 0.43 ± 0.01 mm/h at 13°, 0.92 ± 0.01 mm/h at 15° and 5.30 ± 0.01 mm/h at 20°. Plotted in a mean erosion rate versus slope diagram, the dataset appears strongly non linear and follows an exponential trend (Fig. 10f).

The sharp increase in erosion rate between 15 and 20° indicates a clear change in the dominant erosion processes shaping MatIV. It is incision processes below and mass wasting processes above. Interestingly, this experimental trend of erosion rates as a function of mean slopes is comparable to natural datasets obtained in different mountain belts (Montgomery and Brandon, 2002).

3.6.3.2. Erosion law. We investigated erosion law equations to compare the transport dynamics in our model and in nature. With this aim, we analyzed the sediment yield curves obtained for each slope and we calculated the erosion law parameters that best fit the experimental dataset.

Channelized processes, and particularly fluvial processes, are often modeled by considering that sediment transport and incision are controlled by the shear stress acting on the riverbed (Howard and Kerby, 1983). The so-called “stream power” model assumes that incision can be linked to upstream drainage area A and local slope S (Howard et al., 1994; Stock and Montgomery, 1999; Tucker and Whipple, 2002) (Eq. (7)):

$$\frac{dz}{dt} = kA^mS^n$$

where m and n are positive exponents and k is a dimensional coefficient of erosion. In addition, Hack’s law links the drainage area A to the stream length x downstream of the drainage divide (Hack, 1957) (Eq. (8)):

$$A = k_{xh}x^h$$

where k_{xh} is a dimensional constant and h is the reciprocal of the Hack’s exponent. Accordingly, Eq. (7) can be rewritten (Eq. (9)):

$$\frac{dz}{dt} = Kx^{hm}S^n$$

where $K = k.k_{xh}^{(m/h)}$ is a parameter accounting for hydraulic roughness and bed sediment characteristics. It depends on lithology, climate and sediment load (Stock and Montgomery, 1999; Whipple and Tucker, 1999). Eq. (9) allows modeling the evolution of a longitudinal profile.
(\(dz/dt\)) within the experimental box by calculating the elevation difference due to incision for each point representing the river profile. This 1D longitudinal profile was then integrated over the width of the box (i.e. 0.347 m) in order to calculate the whole sedimentary flux exported at the static basin outlet. This calculated sediment budget was compared to the experimental measurements, which constrain the likely exponents of the erosion law. By looking for the best fitting equation with 3 unknowns (K, hm and n), we forced hm and n to vary by increments of 0.1 between 1 and 3 and we optimized K to minimize the sum of the differences between the model and the measurements (Stock and Montgomery, 1999). From the collection of couples of (hm, n) and best value of K, a least-square algorithm was then used to calculate the best fitting stream power law parameters.

Results show that the best fitting parameters K, hm and n in our experiments are similar for all the initial slopes of the box and therefore independent on this parameter (see Table 2, and insets on Fig. 11). It makes sense as our experiments are carried out in the same conditions of uniform lithology and precipitation where K, hm and n are supposed to be constant (Whipple and Tucker, 1999). Given these parameters, the best fitting models compare well with the evolution of sediment flux with time in experiments (Fig. 11). The modeled sediment flux is consistent with experimental data for slopes lower than or equal to 15° (Fig. 11a, b and c), but fails to reproduce the sediment evolution for 20° initial slope (see rms in Table 2 three times higher than for \(\alpha \leq 15°\) and Fig. 11d). This probably reflects that the dominant erosion process in this experiment (mass wasting and landsliding) is not well accounted by the stream power law. In particular, the equation used is not appropriate to reproduce the very important sediment flux measured in the first 10 min.

Best fitting slope exponent (n) of stream power law is equal to 1.0 in our experiments. This value is within the range of typical values derived from field data (Howard and Kerby, 1983; Stock and Montgomery, 1999; Tarboton et al., 1989) and theoretical considerations (Tucker and Whipple, 2002; Whipple and Tucker, 1999). Exponent hm can be considered as relatively high (best fitting value = 3.0; Table 2). Indeed, in

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>K</th>
<th>hm</th>
<th>n</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.79 (10^{-8})</td>
<td>3.0</td>
<td>1.0</td>
<td>0.036</td>
</tr>
<tr>
<td>13</td>
<td>4.79 (10^{-8})</td>
<td>3.0</td>
<td>1.0</td>
<td>0.020</td>
</tr>
<tr>
<td>15</td>
<td>4.79 (10^{-8})</td>
<td>3.0</td>
<td>1.0</td>
<td>0.034</td>
</tr>
<tr>
<td>20</td>
<td>4.79 (10^{-8})</td>
<td>3.0</td>
<td>1.0</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Table 2

Best fitting parameters of the stream power laws for the different initial slope (\(\alpha\)). rms values in bold reflects experiments where the power law equation accounts for the sediment flux evolution, whereas rms in italic reflects a case where the power law equation is not adapted to account for the experimental data.

Fig. 11. Comparison between experimental sediment flux (thick gray lines) for each slope and the numerical simulation of stream power erosion law (thin black lines) for different initial slopes \(\alpha\). (a) \(\alpha = 10°\); (b) \(\alpha = 13°\); (c) \(\alpha = 15°\); and (d) \(\alpha = 20°\). Insets give the rms values versus hm values, for different exponents n. Best fitting exponents are for lower rms values, that is hm = 3.0 and n = 1 in all cases. The represented numerical simulations of the experimental sediment flux are the best-fit model obtained with the best fitting exponents hm and n. The fit is good for 10, 13 and 15° slope but not for 20° (high rms value). The modeled stream power erosion law does not apply to this slope as hillslope processes dominate over incision processes.
nature reciprocal Hack's exponent h ranges between 0.93 and 2.12 (Hack, 1957; Rigon et al., 1996; Stock and Montgomery, 1999) and exponent m (about 0.1 to 0.5) (Snyder et al., 2000; Stock and Montgomery, 1999) would lead to an exponent h between 0.9 and 1.1. Given the natural reciprocal Hack's exponent h, exponent m in our experiment would be between 1.42 and 3.20. Therefore, the m/n ratio in experiments ($m/n = 3$) is out of range of typical values in nature (between 0.35 and 0.6) (Whipple and Tucker, 1999). However, the agreement for exponent n between our model and nature suggests that the dominant erosion process in our experiment catch the essence of dominant erosion processes in natural watersheds. In addition, exponent m characterizes a discharge–drainage area relationship that is weighted by the importance of discharge on incision. In our experiments, precipitation is held constant through time whereas rainfall is non-uniform in space and time in natural catchments, notably during a high precipitation episode where the transport capacity can be strongly increased. Thus, the uniform distribution of precipitation in our experiments likely explains the high values of exponent. Finally, from a theoretical approach, Whipple and Tucker (1999) have demonstrated that the sensitivity of river profiles to varying lithology, climate or uplift is strongly related to the slope exponent n. In our experiments, this exponent scales like natural watersheds, which indicates that our modeling is appropriate to catch the fundamental aspect of landscape evolution.

4. Discussion

4.1. Example of application

We tested MatIV in a typical experiment of piedmont deformation and erosion to study how it deforms and erodes. We used the experimental setup presented in a previous complementary article (Graveleau and Dominguez, 2008) (Fig. 12A). Deformation processes was triggered by pulling a basal film covered by MatIV beneath a rigid backstop and surface processes were activated by sprinkling water micro-droplets over the model surface. The example described in Fig. 12B illustrates the final stage of an experiment that lasted 12 h at constant rainfall (25 ± 5 mm/h) and convergence rates (30 mm/h). Bulk shortening was 23 cm. Given a length ratio of $1 - 2 \times 10^{-5}$ (1 cm = 500–1000 mm; see next section), the model focused on the upper 10–15 km of the continental crust. From bottom to top, initial stage was composed of three main layers (Fig. 12A): (1) a 6 cm thick deep layer made of a GM and PVC mixture (MatII) and representing a potential deep low-strength rheology; (2) a 10 cm thick MatIV layer tapering outward and representing the continental basement; (3) a 6 cm thick stratified body composed of alternating layers of MatIV (0.7 cm) and GM (0.3 cm) tapering to the right and modeling the pre-existing stratified foreland basin.

Fig. 12B.a presents an oblique view of the model at final stage. Two close up pictures of the surface morphology (Fig. 12B.b) and the internal structures (Fig. 12B.c) are provided to detail how the selected material eroded and deformed respectively. Concerning the deformation style, the model is affected by a main thrust dipping 20° toward the right and modeling the pre-existing stratification and syntectonic sediments and records the lateral amalgamation of alluvial fans deposits (Fig. 12B.c). These basins are elongated perpendicularly to the fault trend and measure 20–25 cm long and 8–10 cm wide. Drainage basin surfaces are in the range of 50 to 200 cm² and display drainage networks with two to three stream orders according to Strahler classification (Strahler, 1957). Due to the flat initial topographic surface, drainage basins mainly grow by headward erosion and catchment widening. Channels are 2–3 cm wide in downstream domains but they rapidly narrow upstreamward. In the valley, strath and alluvial terraces have been formed in response to simultaneous topographic uplift and channel incision phases. Their differences in height rarely exceed 1 or 2 mm and their lengths range from a few centimeters to 7–10 cm. These dimensions will be used in Section 4.3.1 to evaluate a mean geometric scaling factor.

Finally, concerning syntectonic sedimentation, fan-shaped sedimentary bodies rest at drainage basin outlets, downstream to the active thrust (Fig. 12B.b). They correspond to alluvial fan sediments accumulated at the bottom of the uplifting and eroding relief. Their surface is around 150–180 cm² in average and displays contrasted sediment colors according to the distance from the active front (Fig. 12B.b). Close to the fault, “proximal” facies are composed of silica (either GM or SilPwd). Mid-distance facies are composed of black graphite particles that lay at about 15–17 cm from the fan apex. Distal facies correspond to white particles of PVC that generally spread on a large surface. This sorting results from the density and shape contrast between MatIV particles. GM and SilPwd have the heaviest particle density (around 2.5–2.65; Table 1) and therefore have the shortest characteristic transport distance. Graphite and PVC, with particle density around 2.25 and 1.38 respectively (Table 1) and planar or globular shapes, are lighter and are transported farther. In cross-sectional view, internal domains are thrusted over syntectonic deposits that taper toward the undeformed lowland (Fig. 12B.c). Their thickness below the active thrust reaches about 2 cm. Sediments are finely stratified and display downlap structures that indicate foreland progradation. “Proximal” and “distal” sediments can be distinguished according to their color (Fig. 12B.c). Note that a few PVC particles are preserved in this cross-section because they travel farther toward the free boundary conditions in the lowland. Additional experiments have shown that PVC powder could be preserved in syntectonic deposits of piggy-back basins and indented with graphite and silica (Graveleau et al., 2008). Finally, graphite powder delineates the unconformity between ante-tectonic stratification and syntectonic sediments and records the lateral amalgamation of alluvial fans deposits (Fig. 12B.c).

4.2. Modeling deformation and surface processes

Our experimental tests show that pure granular materials such as GM, PVC or SilPwd do not fully satisfy our experimental and physical specifications. GM and PVC present a satisfying deformational style but develop non-realistic landscape morphology dominated by mass wasting processes. SilPwd has a very brittle and unrealistic deformation style to model active piedmont tectonics but it develops a detailed morphology mainly shaped by channelized processes. Accordingly, we tested mixtures composed of these three components and we selected a material (MatIV) whose composition (40% of GM, 40% of SilPwd, 18% of PVC and 2% of Graph) takes advantages of each pure component. MatIV deformation style is controlled by GM and PVC, whereas SilPwd is mainly responsible for the realistic sharpness of morphological details. The observation of internal structures in experiments shows that MatIV generates thrust faults comparable to natural orogenic thrusts (Fig. 12B). Continuous observation of model evolution shows that MatIV erodes dominantly by stream incision processes, which control drainage basin dynamics (Fig. 12B), and also by intermittent landslides on the steepest hillslopes. These landslides may explain why overhangs along channels are scarce and why sharp crests can form between adjacent watersheds. Finally, the
composition of MatIV based on wide granulometric distribution and contrasted color and density of particles facilitates the analysis of alluvial fan evolution. At the surface of experiments, they display detailed morphological features (terraces, distributary channels) and proximal and distal facies due to various characteristic transport distances of particles. In cross-section, the depositional evolution is

Fig. 12. Application of MatIV in an orogenic wedge setting. A) Boundary conditions of the experimental set-up. B) Final stage morphologies and structures. (a) Oblique view of the cross-sectioned model displaying both plan views of the surface and cross-sections close-up. b and b') Digital picture and schematic diagram of the experimental morphology. c and c') Digital picture and schematic diagram of the fault structure near the surface.
4.3. Scaling

We compared experiment results with the morphology and tectonics of a natural mountain belt to evaluate the geometric, dynamic and kinematic scaling and better constrain the comparison between model and nature (Fig. 13). We used the southern Tian-Shan piedmont (NW China) as a natural counterpart to our models because it displays impressive morphological and tectonic markers that remarkably illustrate the interactions between tectonics, erosion and sedimentation. Tian-Shan is an active intracontinental mountain belt presently characterized by slow convergence rates (10–20 mm/yr) (Reigber et al., 2001) and semi-arid climatic conditions (mean precipitation rate below 300 mm/yr) (Poisson, 2002). One have to keep in mind that our comparisons are necessarily limited by the constancy of erosion boundary conditions in model whereas they have changed on the field due to cyclic climatic regimes during the Quaternary (Poisson, 2002).

4.3.1. Geometric scaling

We first analyzed non-dimensional geometric characteristics for drainage basin (relief ratio) and alluvial fan shape (surface slope) to assess the geometric similarity between experiment and nature. Theoretically, such values should be equal in nature and models. In the experiment, the topography develops with relief ratio around 30–58% (16–30°) and alluvial fans form with surface slope around 5–9% (3–5°; Table 4). In Tian-Shan, relief ratio of several river catchments are in the range of 7–17% (4.0–9.7°) and associated fan slopes are around 2.7–5.1% (1.5–2.9°) (Graveleau, 2008). Consequently, slopes in model and nature are in the same range for alluvial fans but not for topography. The agreement for alluvial fan slopes suggests that similar transport-deposition processes (likely debris flow) govern fan dynamics. The difference in relief ratio could correspond to a transitory phase of the topographic evolution or a low erodibility of MatIV. This low erodibility would stymie mass wasting processes on hillslopes and it would limit channel incision capacity. Such limitation is illustrated by the tilted downstream zones observed in relaxation erosion tests (Figs. 9e and 10), which likely indicate the presence of a significant erosion threshold for incision and transport.

To estimate a mean geometric scaling factor (L*) between model and nature, we calculated a range of values from the measured properties of density and cohesion of MatIV and from the similar properties for natural rocks (Schellart, 2000) (Table 3). Based on the dynamic scaling Eq. (1) (see next section for details), results indicates that L* is in the range of 2.0 \times 10^{-4}–1.0 \times 10^{-5}, that is, 1 cm in experiment equals 50–1000 m in nature. To verify this range, we estimated L* with another independent method. We compared the sizes of several morphological features in the experiment and in southeastern Tian-Shan (Fig. 13) and summarized the results in Table 4. It is not a trivial issue as drainage basins and alluvial fans grow during the experiment. However, morphologic features in the model display generally homogeneous sizes from one experiment to the other because the set-up frame and boundary conditions (shortening rates in the range of 30–40 mm/h) are similar and because experiments are performed using a constant rainfall (around 25–30 mm/h). We compared the dimensions of catchments, channels, alluvial fans and terraces (height, length, width) in models and from Tian-Shan morphometric measurements carried out on a 90 m NASA SRTM DEM (Graveleau, 2008; Jarvis et al., 2008; Reuter et al., 2007). Results indicate that geometric scaling factors are relatively similar for piedmont relief (1 cm = 600–1500 m) and terrace height (1 cm = 250–1000 m). Horizontal dimensions have slightly different
The cohesion values for granite are 10^7 Pa, sandstone and granite 10^8 Pa, and marble and consolidated limestone 10^9 Pa. Natural values come from Schellart’s compilation.

An average geometric scaling factor in the same range of 1 is applicable in transport processes. However, the two scaling techniques provide discrepancies, particularly dynamic scaling. The valley length (1 cm = 600 m) and flow depth ranges from 5.10^{-4} m to 10^{-3} m and velocity ranges from a few mm/s to a few cm/s (Table 5). Using a kinematic viscosity of 10^{-6} Pa.s (pure water), these values imply laminar (0.5 < Re < 100) and subcritical turbulent flow (0.01 < Fr < 1), which are classic values measured in ”microscale river” experiments (Malverti et al., 2008).

Concerning hydraulic processes, we followed previous experimental works and calculated Froude and Reynolds numbers to investigate the dynamic scaling of our erosion processes. In experiments, flow depth ranges from 5.10^{-4} m to 10^{-3} m and velocity ranges from a few mm/s to a few cm/s (Table 5). Using a kinematic viscosity of 10^{-6} Pa.s (pure water), these values imply laminar (0.5 < Re < 100) and subcritical turbulent flow (0.01 < Fr < 1), which are classic values measured in “microscale river” experiments (Malverti et al., 2008).

On the field, hydraulic measurements along mountainous rivers generally indicate subcritical-turbulent or supercritical-turbulent flows (Mount, 1995). For instance, the Urumqi river in northern Tian-Shan indicates average turbulent Reynolds number of 370 000 ± 280 000 and average subcritical Froude number of 0.44 ± 0.18 (Liu et al., 2008). Thus, Froude numbers fit between model and nature but not Reynolds numbers. This discrepancy is due to the improper use of water as a flowing liquid in model (Paola et al., 2009; Peakall et al., 1996) but it is not a limiting factor. Indeed, channels in experiment and nature respond to the same balance of forces that promotes gravitational forces over inertial and viscous forces (Niemann and Hashbargen, 2005). In addition, relaxing Reynolds number is allowed since turbulent and laminar channels are governed by identical dimensionless equations and therefore follow the same dynamics (Malverti et al., 2008).

Table 3
Characteristics of gravity, length, density, angle of internal friction and cohesion in nature and experiment. Density of 2000 kg/m^3 is for sandstone whereas 2800 kg/m^3 is for granite. Cohesion of 10^7 Pa is for sandstone and granite whereas 10^8 Pa is for marble and consolidated limestone. Natural values come from Schellart’s (2000) compilation.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nature</th>
<th>Experiment</th>
<th>Model to nature ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity (m/s^2)</td>
<td>9.81</td>
<td>9.81</td>
<td>1</td>
</tr>
<tr>
<td>Length (m)</td>
<td>50</td>
<td>0.01</td>
<td>2.0 10^{-4} – 1.0 10^{-5}</td>
</tr>
<tr>
<td>Density (kg/m^3)</td>
<td>2000</td>
<td>1600</td>
<td>0.80 – 0.57</td>
</tr>
<tr>
<td>Angle of internal friction (°)</td>
<td>25–45</td>
<td>40–48</td>
<td>–</td>
</tr>
<tr>
<td>Cohesion (Pa)</td>
<td>10^7</td>
<td>10^8</td>
<td>1.2 10^{-4} – 7.5 10^{-6}</td>
</tr>
</tbody>
</table>

Table 4
Comparison between morphological dimensions of several features in experiment and on the field. Field data are extracted from catchments in the south-eastern piedmont of Tian-Shan mountain range (Graveleau, 2008).

<table>
<thead>
<tr>
<th>Experiment (cm)</th>
<th>Tian-Shan (m)</th>
<th>Scaling factor</th>
<th>L* (m)</th>
<th>1 cm (model) = ... m (nature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Piedmont relief</td>
<td>3–5</td>
<td>3000–4500</td>
<td>6.7 10^{-6} – 1.7 10^{-5}</td>
</tr>
<tr>
<td>Terrace height</td>
<td>0.1–0.2</td>
<td>50–150</td>
<td>4.0 10^{-5} – 6.7 10^{-5}</td>
<td>250–1500</td>
</tr>
<tr>
<td>Drainage basin length</td>
<td>20–25</td>
<td>15,000–30,000</td>
<td>6.7 10^{-7} – 1.7 10^{-5}</td>
<td>600–1500</td>
</tr>
<tr>
<td>Drainage basin width</td>
<td>8–10</td>
<td>5000–15,000</td>
<td>5.3 10^{-5} – 2.0 10^{-5}</td>
<td>500–1875</td>
</tr>
<tr>
<td>Valley length</td>
<td>20–25</td>
<td>15,000–40,000</td>
<td>5.0 10^{-6} – 1.7 10^{-5}</td>
<td>600–2000</td>
</tr>
<tr>
<td>Valley width</td>
<td>0.5–2</td>
<td>100–600</td>
<td>8.0 10^{-6} – 2.0 10^{-5}</td>
<td>50–1200</td>
</tr>
<tr>
<td>Alluvial fan radius</td>
<td>10–20</td>
<td>8000–12,000</td>
<td>8.3 10^{-6} – 2.5 10^{-5}</td>
<td>400–1200</td>
</tr>
<tr>
<td>Terrace length</td>
<td>1–10</td>
<td>100–500</td>
<td>2.0 10^{-5} – 10^{-3}</td>
<td>10–5000</td>
</tr>
<tr>
<td>Terrace width</td>
<td>0.2–1</td>
<td>100–500</td>
<td>4.10^{-5} – 10^{-4}</td>
<td>100–2500</td>
</tr>
<tr>
<td>Geometrical ratio</td>
<td>Relief ratio</td>
<td>16–30°</td>
<td>4.0–9.7°</td>
<td>–</td>
</tr>
<tr>
<td>Alluvial fan slope</td>
<td>3–5°</td>
<td>1.5–2.9°</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 5
Calculations of Reynolds and Froude numbers from characteristic values of flow depth, flow velocity and gravity in experiments. The dynamic fluid viscosity is for water.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Experiment</th>
<th>Flow depth (m)</th>
<th>Flow velocity (m/s)</th>
<th>Gravity (m/s^2)</th>
<th>Dynamic fluid viscosity (Pa.s)</th>
<th>Reynolds number</th>
<th>Froude number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>m</td>
<td>5.0 10^{-4}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>0.1</td>
<td>9.81</td>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.01</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.3. Kinematic scaling

Kinematic scaling is generally not a problem in purely frictional sandbox models since dry sand rheology does not depend on strain rate (Horsfield, 1977). As mentioned earlier (see Section 2.2), kinematic scaling in experimental modeling of landscape dynamics is much more problematic to achieve because numerous time scales for erosion–transport processes coexist (Lague et al., 2003; Schumm et al., 1987). However, we challenge the idea to evaluate a mean temporal scaling factor at the scale of the whole model by comparing first order transfer fluxes between model and nature. For that, we based our analysis on comparing mean erosion rates.

To estimate average erosion rates for MatIV, we used the results from tectonically inactive experiments performed with initial slopes ranging from 10 to 15° (see Section 3.6.3.1). For these slopes, erosion rates are in the order of 0.1–1 mm/h (Fig. 10f). In natural mountain belts, mean erosion rates vary significantly depending on the range (Ahnert, 1970; Montgomery and Brandon, 2002; Pinet and Souriau, 1988), the measurement methodology and the considered time scale (Kirchner et al., 2001). However, if we consider only average estimations in tectonically inactive areas, mean erosion rates in nature are in the order of 0.01 to 0.2 mm/year (Montgomery and Brandon, 2002). Note that it is almost one to two orders of magnitude lower than values in tectonically active convergent areas (Montgomery and Brandon, 2002). Given the geometric scaling ratio between the model (for instance, incision rate or knickpoint retreat rate) are probably not properly downscaled to their natural counterparts according to this time ratio. It is particularly not valid at a very local scale due to improper dynamic scaling of erodibility or fluvial processes, as noted in the previous section. That said, our calibration gives a very interesting order of magnitude estimate to catch the analogy between model and nature. This kinematic scaling should benefit from future work performed with tectonically active conditions by monitoring erosion rates at the scale of drainage basins in the model (as on Fig. 12) and to compare these values with their counterparts in natural landscapes (the Himalaya, the Olympic Mountains, Taiwan, Tian-Shan, etc.). We think that the time ratio should not vary significantly because higher erosion rates in model will be compared to higher erosion rates in nature. First results obtained on comparisons between morphotectonic experiments of triangular facets and natural extensional landforms confirm this suggestion since time and spatial scaling factors are similar to our work (Strak et al., 2011).

4.4. Saturation ratio and compaction

Saturation ratio is a key parameter for the experimental material we developed because it controls both its mechanical behavior and its erosional properties. Basically, we observed that a major change in material rheology occurs between the first top millimeters of the material and at depth. Indeed, when MatIV is submitted to standard experimental conditions (continuous rainfall), the first half-centimeter of the material is mechanically very soft (likely low internal friction and medium cohesion). Consequently, all the typical experimental morphologies shown in Fig. 12 are not rigid features but rather very soft landforms that can spread easily under a gentle finger’s touch. This indicates that MatIV is a thixotropic material likely close to water saturation ratio near the surface. However, the occurrence of centimeter high topography and even overhangs on hillslopes suggest that these upper centimeters are actually not totally saturated but still have enough capillary cohesion to sustain relief. If the material were fully saturated, crests, ridges and overhangs could not form and model morphology would be very smooth. Additionally, MatIV’s moderate permeability (see Section 3.4) implies that rainfall infiltrates slightly on hillslopes (seepage fluxes are certainly very low). This may increase local saturation ratio, influence slope stability and trigger mass wasting (landslides). In channel networks, similar infiltration of runoff probably occurs but incision is related to the shear stress of the fluid/particles flow applied at the boundary layer. The basal shear stress is then able to overcome the threshold for detachment and transport of particles (Howard, 1994) and, like in nature, induces progressive erosion of the river bed. Rapid variations of incision rate allow terrace formation and affects the hillslope base-level, which controls potential mass wasting events (Burbank et al., 1996).

At depth, MatIV shows a significant downward hardening. It is likely related to a change in porosity, saturation ratio and density due to lithostatic pressure and compaction. We have not been able to measure this strength evolution with depth but our first estimations suggest that, at the surface, internal friction would be very low whereas cohesion would be on the order of several hundreds of Pascal. At depth, internal friction would be close to values measured in Section 3.5.1.2 and cohesion in the order of several thousands of Pascal. We presume that both these friction and cohesive properties should stabilize rapidly with depth, maybe 1 cm below the surface. This feature is not necessarily a limiting factor since a similar strength hardening with depth is classically considered for the brittle upper crust (Byerlee, 1978). In addition, our measurements of mean frictional properties suggest that MatIV is reasonably well scaled to natural rock basement but a little too strong compared to sedimentary rocks. To overcome this limitation, MatIV is usually interstratified with GM layers in the outward domains to weaken the strength of the material pile (see Fig. 12) and more closely match the rheology of foreland sedimentary fill.

5. Conclusion

We developed a new experimental approach to model simultaneous deformation and erosion–transport–sedimentation processes in a mountain range piedmont. Because common materials for tectonic and geomorphic experiments were not suitable for this approach, we tested various granular materials in water-saturated conditions. These included glass microbeads “GM”, silica powder “SilPwd”, plastic powder “PVC” and graphite “Graph”. If used pure, GM, SilPwd and PVC materials did not display suitable deformation styles and erosion morphology so we developed a mixture, called MatIV, made up with 40% GM, 40% SilPwd, 18% PVC and 2% Graph (percentage in weight). This material represents an interesting compromise because it correctly satisfies the following physical criteria for erosion and deformation inspired from nature:

1. From a tectonic point of view, MatIV satisfies Mohr–Coulomb failure criterion, localizes deformation along shear zones (faults) and presents reasonably downscaled frictional properties.
2. From a morphological point of view, MatIV erodes by channelized processes (fluvial-like incision) and hillslope processes (mass landslides) that reproduce morphogenetic evolution of natural mountains. It generates topography with morphological features like drainage basins, channel networks, crests and terraces. Its erosional properties have been investigated in relaxation experiments and measurements of erosion fluxes allowed evaluating exponents
of a stream power erosion law. The erosion parameters scale reasonably well with natural catchments, which indicate that erosion–transport processes with MatIV are comparable to natural mass transfer laws in real drainage basins.

3. From a sedimentologic point of view, transport and deposition processes of MatIV generate fan shape sedimentary objects. These fans present detailed features in plan view (active and inactive channels) and cross-section (stratification, segregation of distal and proximal deposits) that compare well with the dynamic and geometric record of natural alluvial deposits.

In conclusion, new experimental material MatIV developed in this study appears very promising and suitable to investigate new geological issues concerned with interactions between deformation and surface processes in various tectonic and climatic settings.

Acknowledgments

The “Reliefs” and “Eclipse” INSU-CNRS programs and ANR Taiwan funded this study. F.G. acknowledges a PhD grant from the Ministère de l’Enseignement Supérieur et de la Recherche (France). The authors thank C. Romano, E. Berthebaud, J. Ouyyed for building the experimental set-ups and for technical assistance. Many thanks to the Gladys project (www.gladys-littoral.org) for allowing granulometric measurements, to the University of Montpellier II and its microscopy service for Scanning Electron Microphotographs and to D. Loggia, P. Azais and A. Belghoul for their help, discussion and technical assistance with permeameter measurements. We are also thankful to A. Taboada, N. Estrada, F. Radijai and S. El Yousoufi for discussion about granular materials. Several figures have been drawn with the GMT free software (Wessel and Smith, 1991). Comments and suggestions from an anonymous reviewer were greatly appreciated and contributed to the improvement of the manuscript.

References

Babi, P., Colletta, B., Zubieta, D., 1995. Etude géométrique et expérimentale d’un bassin de l’Enseignement Supérieur et de la Recherche (France). The authors thanks to the Gladys project (www.gladys-littoral.org) for allowing granulometric measurements, to the University of Montpellier II and its microscopy service for Scanning Electron Microphotographs and to D. Loggia, P. Azais and A. Belghoul for their help, discussion and technical assistance with permeameter measurements. We are also thankful to A. Taboada, N. Estrada, F. Radijai and S. El Yousoufi for discussion about granular materials. Several figures have been drawn with the GMT free software (Wessel and Smith, 1991). Comments and suggestions from an anonymous reviewer were greatly appreciated and contributed to the improvement of the manuscript.

References

Babi, P., Colletta, B., Zubieta, D., 1995. Etude géométrique et expérimentale d’un bassin de l’Enseignement Supérieur et de la Recherche (France). The authors thanks to the Gladys project (www.gladys-littoral.org) for allowing granulometric measurements, to the University of Montpellier II and its microscopy service for Scanning Electron Microphotographs and to D. Loggia, P. Azais and A. Belghoul for their help, discussion and technical assistance with permeameter measurements. We are also thankful to A. Taboada, N. Estrada, F. Radijai and S. El Yousoufi for discussion about granular materials. Several figures have been drawn with the GMT free software (Wessel and Smith, 1991). Comments and suggestions from an anonymous reviewer were greatly appreciated and contributed to the improvement of the manuscript.

References

Babi, P., Colletta, B., Zubieta, D., 1995. Etude géométrique et expérimentale d’un bassin de l’Enseignement Supérieur et de la Recherche (France). The authors thanks to the Gladys project (www.gladys-littoral.org) for allowing granulometric measurements, to the University of Montpellier II and its microscopy service for Scanning Electron Microphotographs and to D. Loggia, P. Azais and A. Belghoul for their help, discussion and technical assistance with permeameter measurements. We are also thankful to A. Taboada, N. Estrada, F. Radijai and S. El Yousoufi for discussion about granular materials. Several figures have been drawn with the GMT free software (Wessel and Smith, 1991). Comments and suggestions from an anonymous reviewer were greatly appreciated and contributed to the improvement of the manuscript.

References

Babi, P., Colletta, B., Zubieta, D., 1995. Etude géométrique et expérimentale d’un bassin de l’Enseignement Supérieur et de la Recherche (France). The authors thanks to the Gladys project (www.gladys-littoral.org) for allowing granulometric measurements, to the University of Montpellier II and its microscopy service for Scanning Electron Microphotographs and to D. Loggia, P. Azais and A. Belghoul for their help, discussion and technical assista

